Synthesis of SO₄²⁻/ZrO₂/MCM-41 as a new superacid catalyst[†]

Q.-H. Xia, K. Hidajat and S. Kawi*

Department of Chemical & Environmental Engineering, National University of Singapore, Singapore 119260, Republic of Singapore. Email: chekawis@nus.edu.sg

Received (in Cambridge, UK) 26th July 2000, Accepted 3rd October 2000 First published as an Advance Article on the web 31st October 2000

A new SO₄²⁻/ZrO₂/MCM-41 superacid catalyst has been successfully synthesized and is *ca*. 2.5–3 times more active than the conventional SO₄²⁻/ZrO₂ superacid catalyst for MTBE synthesis and *n*-pentane isomerization.

It is well known that zirconia, when modified with anions such as sulfate, forms a highly acidic or superacidic catalyst. In recent years, sulfated zirconia superacids have attracted increasing attention because these catalysts are found to be well suited for catalyzing reactions of industrial importance, such as hydrocarbon isomerization, etherification reactions, etc.1-8 However the non-uniform pore size and relatively small surface area of SO_4^{2-}/ZrO_2 may limit its potential application for catalyzing bulky molecules. The use of M41s and other mesoporous materials,^{9–12} which have very uniform mesopores and very high surface area, as catalyst supports for SO_4^{2-}/ZrO_2 should greatly expand the catalytic properties and capabilities of SO_4^{2-}/ZrO_2 for some applications. This is because such mesoporous materials, which have relatively small diffusion hindrance, can aid the diffusion of bulky organic molecules in and out of their mesopores quite easily.⁹ Although many superacid catalysts have been developed using silica, alumina and microporous zeolites as supports, 2^{-8} there are still many limitations in their applications because of diffusion problems. Although a direct preparation of mesoporous sulfated zirconia has been recently reported,13 the resulting materials had relatively small surface areas compared to that of conventional SO_4^{2-}/ZrO_2 and they were not tested for a particular reaction. Up to now, no silica-based M41s superacid materials nor gasphase synthesis of MTBE from methanol and tert-butyl alcohol on acidic mesoporous catalysts have been reported. In this work, the active superacid SO_4^{2-}/ZrO_2 component has been successfully supported on the surface of MCM-41 to form a new $SO_4^{2-}/ZrO_2/MCM-41$ superacid catalyst, which is found to be 2.5–3 times more active than the conventional SO_4^2 –/ZrO₂ superacid catalyst for MTBE synthesis and n-pentane isomerization.

Zr(OH)₄ was supported onto the surface of MCM-41 through chemical liquid deposition and hydrolysis of Zr(OPrn)₄. Predried siliceous MCM-41 powder having a BET surface area of 1311 m² g⁻¹ and a pore diameter of 31.1 Å was dispersed into a mixed solution of $Zr(OPr^n)_4$ and *n*-hexane under vigorous stirring. After evaporating off the solvent, the solid was transferred into a glass container containing an NaCl-saturated aqueous solution at the bottom of the container in order to achieve complete hydrolysis at room temp. overnight. Pure Zr(OH)4 was also prepared through hydrolysis of anhydrous ZrCl₄ in ammonia solution with a pH of 9–10.³ After drying both samples at 100 °C overnight, the two resulting solids were immersed into 0.5 M H₂SO₄ solution at room temp. for 30 min. The sulfated Zr(OH)₄/MCM-41 and Zr(OH)₄ were then filtered off, dried at 100 °C overnight and calcined at 600 °C in air for 3 h to form SO_4^2 -/ZrO₂/MCM-41 and SO_4^2 -/ZrO₂. The content of ZrO₂ in the SO₄²⁻/ZrO₂/MCM-41 catalyst was analyzed by ICP to be ca. 41 wt%. It should be noted that, when $ZrCl_4$ was used as a precursor in the preparation of $Zr(OH)_4$

MCM-41, the mesoporous structure of MCM-41 collapsed in the basic medium required for the hydrolysis of $ZrCl_4$.

XRD was used to characterize the regular mesoporous structure of MCM-41 and the resulting crystalline phase of bulk and supported ZrO₂. Fig. 1 shows that, for SO_4^{2-}/ZrO_2 calcined at 600 °C, three intense diffraction peaks at ca. 30, 50 and 60° and several small peaks at ca. 35 and 62° can be observed. These diffraction peaks show the presence of the tetragonal ZrO_2 crystalline phase, rather than the monoclinic ZrO_2 phase, and the absence of other impurities. This result shows that the introduction of SO42- anions can remarkably stabilize the metastable tetragonal ZrO₂ phase, which is known to be an ideal crystalline phase for high catalytic activity.^{2,4,6} The XRD pattern of $SO_4^{2-}/ZrO_2/MCM-41$ shows three clear and intense peaks below 10°, showing that the regular hexagonal mesostructure of the MCM-41 support is still maintained even after it has gone through the processes of chemical liquid deposition of ZrO₂, impregnation of sulfuric acid and high-temperature calcination. Furthermore, only a very small XRD peak at ca. 30° is observed on $SO_4^{2-}/ZrO_2/\dot{M}CM-\dot{4}1$, showing that most of the ZrO₂ has been highly dispersed on the MCM-41. However, when this XRD picture is enlarged $5 \times$, three diffraction peaks at ca. 30, 50 and 60° can be observed. This shows that, under very high loading of zirconia, a very small amount of ZrO₂ clusters (present as tetragonal ZrO₂ phase) might be formed within or outside the MCM-41 structure. BET analyses show that SO₄²⁻/ZrO₂/MCM-41 (686 m² g⁻¹) has a much larger surface area than SO_4^{2-}/ZrO_2 (101 m² g⁻¹). The pore size of $SO_4^{2-}/ZrO_2/MCM-41$ (29.1 Å) is less than that of MCM-41 (31.1 Å), showing that the supported ZrO_2 has been dispersed onto the surface of mesopores of MCM-41.

The *in situ* FTIR spectrum of SO_4^{2-}/ZrO_2 measured after evacuation at 400 °C for 2 h shows an absorption band at 1378 cm⁻¹, corresponding to the asymmetric stretching frequency of covalent S=O; this band is often regarded as the characteristic

Fig. 1 XRD patterns of SO_4^{2-}/ZrO_2 and $SO_4^{2-}/ZrO_2/MCM-41$ superacid catalysts calcined in air at 873 K for 3 h and of siliceous MCM-41.

[†] Electronic supplementary information (ESI) available: characterization data for catalysts. See http://www.rsc.org/suppdata/cc/b0/b006051h/

band of SO₄²⁻ on promoted superacids.^{2-4,6} This band shifts to 1363 cm⁻¹ for $SO_4^{2-}/ZrO_2/MCM-41$; the shifting is attributed to the influence of the interaction between ZrO₂ and framework SiO₂. TGA spectra show that both samples display common double-stage weight-loss features: the first below 200 °C (due to the evaporation of physically adsorbed water and other molecules), and the second between 580 and 900 °C (attributed to the removal of SO_4^{2-} species interacting with ZrO_2). The similarities of the decomposition temperature between these two samples indicate that the distribution of SO₄²⁻ species on both SO_4^{2-}/ZrO_2 and $SO_4^{2-}/ZrO_2/MCM-41$ is quite similar. Based on the amount of weight loss, SO_4^{2-}/ZrO_2 and $SO_4^{2-}/$ ZrO₂/MCM-41 calcined at 600 °C contain 5.8 and 7.6 wt% of sulfate ions, respectively. Since the ZrO_2 content in SO_4^{2-1} $ZrO_2/MCM-41$ is nearly half of that in $SO_4^2 - /ZrO_2$, this result shows that the highly dispersed ZrO₂ on MCM-41 can expose more ZrO_2 and adsorb more SO_4^{2-} anions than bulk crystalline ZrO_2

The acid strengths of SO_4^{2-}/ZrO_2 and $SO_4^{2-}/ZrO_2/MCM-41$ samples calcined at 600 °C for 3 h were measured by the change of the color of a Hammet indicator added to the dried powder sample dissolved in the solvent. Both samples are found to have an H_0 value around -13.8 (measured in 2,4-dinitrotoluene), a typical value for superacids,²⁻⁶ showing that they are *ca*. $10^4 \times$ more acidic than 100% H₂SO₄. After calcination at 650 °C for 3 h, the acid strengths for both samples were increased to H_0 *ca*. -16.0 (measured in 1,3,5-trinitrobenzene).

Pyridine adsorption *in-situ* IR spectra were measured for both samples to measure the presence of Bronsted and Lewis acid sites. This was done by first pretreating a self-supporting wafer (15 mg) of the sample at 400 °C for 3 h under a vacuum of 10^{-6} mbar before adsorbing an excess of pure pyridine at room temperature, followed by evacuation at 200 °C for 30 min.⁸ FTIR spectra on these two superacid catalysts show that they contain strong Bronsted acidity (at 1540 cm⁻¹) and Lewis acidity (at 1450 cm⁻¹). The intensities of Bronsted acid (having an integrated area of 1.20) and Lewis acid (having an integrated area of 1.43) sites of SO₄²⁻/ZrO₂/MCM-41 are much stronger than the Bronsted acid (0.70) and Lewis acid (1.00) sites of SO₄²⁻/ZrO₂. Both TGA and FTIR results show that SO₄²⁻/ZrO₂/MCM-41 has more exposed Bronsted and Lewis acid sites than SO₄²⁻/ZrO₂.

For the isomerization of *n*-pentane, which is a model reaction for characterizing the catalytic properties of these superacid catalysts, 0.5 g of powder catalyst was placed in a glass batch reactor and activated in vacuum at 250 °C for 3 h before 1 ml of pure *n*-pentane was introduced into the reactor and the reaction carried out at 60 °C under vigorous stirring. For the gas-phase synthesis of MTBE from MeOH and ButOH in a fixed-bed reactor, the catalyst (0.20 g) was dehydrated in a flow of helium before a mixture of MeOH and ButOH (with a molar ratio of 10:1 and a WHSV of 10 h⁻¹) was pumped into the reactor heated at 140 °C. Table 1 shows that both superacid catalysts have rather high activities for both reactions, with $SO_4^2 - /ZrO_2 /$ MCM-41 always showing higher catalytic activity than $SO_4^{2-/}$ ZrO₂. For the isomerization of *n*-pentane, the TON of $SO_4^{2-}/$ $ZrO_2/MCM-41$ is almost 3 × that of $SO_4^2 - /ZrO_2$, while the selectivity of product to isopentane is 98-99% for both

Table 1 Catalytic activities of $SO_4{\rm ^{2-}/ZrO_2}$ and $SO_4{\rm ^{2-}/ZrO_2/MCM-41}$ superacid catalysts

t/min	SO42-/ZrO2		SO42-/ZrO2/MCM-41	
	TON ^a	Selec.(%)	TON ^a	Selec.(%)
60	0.27	98 ^b	0.81	100 ^b
200	0.41	98	1.19	99
360	0.50	98	1.36	99
500	0.54	98	1.42	99
60	4.11	100 ^c	10.10	100 ^c
80	4.13	100	10.13	100
360	4.11	100	10.12	100
500	4.12	100	10.10	100
	/min 60 200 360 500 60 80 360 500	TON^{a} 60 0.27 00 0.41 60 0.50 500 0.54 60 4.11 80 4.13 360 4.11 500 4.12	TON ^a Selec.(%) 60 0.27 98^b 00 0.41 98 60 0.50 98 60 0.54 98 60 4.11 100^c 80 4.13 100 660 4.11 100^c 80 4.13 100 600 4.12 100	TON^a Selec.(%) TON^a 60 0.27 98 ^b 0.81 00 0.41 98 1.19 60 0.50 98 1.36 600 0.54 98 1.42 60 4.11 100 ^c 10.10 80 4.13 100 10.13 60 4.11 100 10.12 60 4.12 100 10.10

catalysts. Increasing the batch reaction time gradually increases the TON of both catalysts to approach the equilibrium value. For the synthesis of MTBE, the TON of SO₄²⁻/ZrO₂/MCM-41 is nearly 2.5 × that of SO₄²⁻/ZrO₂, while a complete selectivity to MTBE is obtained on both catalysts. With an increase of reaction time, the TON of both catalysts remain almost unchanged. The reaction results show that the higher catalytic activity of SO₄²⁻/ZrO₂/MCM-41, as compared to SO₄²⁻/ZrO₂, is attributed to the increase of the number of active acid sites due to the highly exposed and easily accessible active sites of SO₄²⁻/ZrO₂ on the surface of MCM-41. All of these results further elucidate the advantages of using a high BET surface area and uniform mesoporous material as a support for superacid catalysts for MTBE synthesis and other acidcatalyzed organic reactions in the future.

Notes and references

- 1 K. Arata, Adv. Catal., 1990, 37, 165.
- 2 G. D. Yadav and J. J. Nair, *Microporous Mesoporous Mater.*, 1999, 33, 1.
- 3 Y. D. Xia, W. M. Hua, Y. Tang and Z. Gao, *Chem. Commun.*, 1999, 1899.
- 4 T. Jin, T. Yamaguchi and K. Tanabe, J. Phys. Chem., 1986, 90, 4797.
- 5 G. D. Yadav and N. Kirthivasan, J. Chem. Soc., Chem. Commun., 1995, 203.
- 6 M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1979, 1148; M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1980, 851.
- 7 F. R. Chen, G. Coudurier, J. F. Joly and J. C. Vederine, J. Catal., 1993, 143, 616.
- 8 T. Lei, J. S. Xu, Y. Tang, W. M. Hua and Z. Gao, *Appl. Catal. A: General*, 2000, **192**, 181.
- 9 S. Biz and M. L. Occeli, Catal. Rev.-Sci. Eng., 1998, 40, 329.
- 10 S. Kawi and M. W. Lai, Chem. Commun., 1998, 1407.
- 11 A. M. Liu, K. Hidajat, S. Kawi and D. Y. Zhao, *Chem. Commun.*, 2000, 1145.
- 12 R. Anwander, C. Palm, G. Gerstberger, O. Groeger and G. Engelhard, *Chem. Commun.*, 1998, 1811.
- 13 D. J. McIntosh and R. A. Kydd, *Microporous Mesoporous Mater.*, 2000, 281.